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The non-linear stochastic dynamic behaviour of a high-rise vertical transportation system
modelled as a concentrated mass and a cable with finite bending stiffness is considered. The
slow time scale is defined and lateral cable displacements coupled with transverse motions
are expanded in terms of approximating functions. The excitation of the high-rise building
is assumed in the form of a narrow-band mean-square process equivalent to the harmonic
process. The equivalent linearization technique is used to replace the original non-linear
system with a linear approximation whose coefficients are determined from minimization of
the mean-square equation difference between both systems.
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1. Introduction

The equations and numerical results included in this paper concern the problem presented at
the 4th Polish Congress of Mechanics and 23rd Conference on Computer Methods in Mechanics
(PCM-CMM) which took place in September 2019.
From the point of view of safety and structural integrity of a system, it is very important to

consider vibrations (sway) of high-rise buildings due to dynamic excitations. The sway with low
frequencies and large amplitudes is observed (Kijewski-Correa and Pirnia, 2007) which affects
dynamic behaviour of structural parts of vertical transportation systems such as cables or ropes
deployed in lift installations. The longitudinal time-dependent displacements of a cable-mass
system are coupled with its transverse motions. Therefore, dynamic behaviour of the system is
described by non-linear non-stationary equations of motion. In literature, different approaches
can be found to represent the excitation mechanism in analysis of high-rise buildings under wind
loads – from deterministic functions to stochastic methods (Larsen et al., 2007; Kaczmarczyk
et al., 2009; Giaccu et al., 2015; Kaczmarczyk and Iwankiewicz, 2017a). Undoubtedly, the real
nature of forces caused by wind is randomness. The corresponding excitation mechanism can
be considered as random. The governing equations are then expressed by linear differential
equations that define the excitation as a narrow-band random process.
It is difficult to use analytical methods to solve nonstationary and non-linear equations

(Terumichi et al., 1995). Therefore, in most cases, numerical techniques are applied. In this
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paper, the earlier research concerning vibration of a cable-mass system with time-varying length
in high-rise buildings carried out by Kaczmarczyk and Iwankiewicz (2017a,b) and Weber et al.
(2019), where the string model of the cable (rope) with concentrated mass was considered is
developed further. The rope considered as a long beam of small bending stiffness is examined,
which requires modification of deterministic and stochastic equations. To replace the original
non-linear set of equations by an equivalent linear one, an equivalent (statistical) linearization
technique is applied. Using the condition of mean-square minimization of the error between
the non-linear and linear system, the coefficients of the equivalent linear system in terms of
expectations of particular random state variables are obtained.

The equivalent statistical linearization technique has been implemented to consider a broad
range of problems in the area of non-linear stochastic dynamics (Caughey, 1963; Spanos, 1981;
Roberts and Spanos, 1990; Socha, 2008). In many papers, the effectiveness of this technique is
compared with other statistical methods (Roberts, 1981; Proppe et al., 2003) or combined with
other computational methods in random vibrations (Spanos and Evangelatos, 2010; Kougio-
umtzoglou et al., 2017). In this work, the equivalent linearization technique is used to obtain
expectations and variances of generalized coordinates describing dynamic behaviour of the cable
and of the main mass. The results are then compared with the values determined from the ori-
ginal non-linear system subjected to the deterministic harmonic kinematic excitation and with
the results generated by the application of Monte Carlo (MC) simulation.

2. Non-linear deterministic system

Consider a high-rise building with an elevator car moving vertically in a lift shaft with the
transport speed and acceleration denoted as V (t) and a(t) = V̇ (t), respectively (Fig. 1a,b).

Fig. 1. (a) High-rise building; (b) lift elevator; (c) lift car-cable system schematic model
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The external dynamic loads cause the sway of the building structure. As a result, lateral dis-
placements at the top of the host structure denoted as v0 are observed, which leads to excitation
of the car suspension ropes (cables) deployed within the system. The longitudinal displacements
of the rope u(x, t) are coupled with its lateral vibrations v(x, t). Often the cables are considered
as strings without bending stiffness. However, in lift applications, the cables are steel wire ropes
(SWR) of a stranded construction of a finite low (non-zero) bending stiffness (Kaczmarczyk and
Mirhadizadeh, 2016). The model considered here comprises the concentrated mass M moving
slowly downwards. The mass is attached at the lower end of the cable of bending stiffness EI
and the longitudinal stiffness EA, respectively (see Fig. 1c). The longitudinal (axial) vibrations
of the main mass are represented by uM (t). In this model E, A, I and m denote the modulus of
elasticity, cross-sectional metallic area, second moment of inertia of the cross-sectional area and
mass per unit length. During the overall transport motion, length of the cable varies with time
and is represented as L = L(t).

The cable strain measure is defined as ε(x, t) = ux(x, t) + 0.5v
2
x(x, t), while its quasi-static

tension is expressed by the formula T (t) = (M +mL(t))(g − a(t)). The partial derivative with
respect to x is denoted as (·)x. If the Hamilton principle is applied, the equation governing the
dynamic response of the system can be derived from in the following form

t2∫

t1

(δE(x, t) − δΠ(x, t) + δWnc(x, t)) = 0 δWnc(x, t) = 0 at t = t1, t2 (2.1)

with E(x, t), Π(x, t), Wnc(x, t) being the kinetic and potential energies of the system and the
work of external non-conservative forces, respectively. The kinetic energy of the presented system
is expressed by

E(x, t) =

L∫

0

1

2
m
[
(u̇(x, t) + V (t))2 + v̇2(x, t)

]
dx+

1

2
M(u̇M (t) + V (t))

2 (2.2)

where the first term represents kinetic energy density of the cable while the second one kinetic
energy of the end mass. The total derivatives with respect to time are denoted as u̇(x, t) ≡
du(x, t)/dt = ut(x, t) + V (t)ux(x, t) and v̇(x, t) ≡ dv(x, t)/dt = vt(x, t) + V (t)vx(x, t). If the
potential energy is adopted in the form

Π(x, t) =

L∫

0

[1
2
EIv2xx(x, t) + T

i(x, t)ε(x, t) +
1

2
EAε2(x, t)−mgu(x, t)

]
dx−MguM (t) (2.3)

and the total derivative is expressed by

d2(·)

dt2
= (·)tt + 2V (·)xt + V

2(·)xx + a(·)x (2.4)

the following set of partial differential equations of motion is then obtained as

m
d2u(x, t)

dt2
− EAεx(x, t) = 0

m
d2v(x, t)

dt2
+ EIvxxxx(x, t)− T (t)vxx(x, t)

+m(g − a(t))(xvxx(x, t) + vx(x, t))− EA(ε(x, t)vx(x, t))x = 0

MüM (t) + EAε(x, t)
∣∣∣
x=L
= 0

(2.5)
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where the mean quasi-static tension inside the cable is defined by the formula

T i(x, t) = [M +m(L(t)− x)](g − a(t)) (2.6)

The boundary conditions are assumed as u(0, t) = 0 and uM = u(L, t) at x = L. In further
considerations, the longitudinal inertia of the cable in the first part of Eqs. (2.5) is neglected
because of significantly higher values of longitudinal frequencies obtained for tensioned cables in
comparison to the lateral frequencies and excitation frequencies. Integrating this equation leads
to obtaining the following expressions

ux(x, t) = e(t)−
1

2
v2x(x, t) e(t) =

uM (t)

L(t)
+
1

2L(t)

L∫

0

v2x(x, t) dx (2.7)

where e(t) denotes the mean quasi-static axial strain in the rope. The second expression in Eq.
(2.7) is derived by integrating the first one over x from 0 to L. Using Eq. (2.4) and Eq. (2.7)
leads to reducing Eq. (2.5) to a set of two equations

mvtt(x, t) + EIvxxxx(x, t) +
{
m(V 2(t) + (g − a(t))x)− T (t)

−
EA

L(t)

(
uM (t) +

1

2

L∫

0

v2x(x, t) dx
)}
vxx(x, t) +mgvx(x, t) + 2mV (t)vxt(x, t) = 0

MüM (t) +
EA

L(t)

(
uM (t) +

1

2

L∫

0

v2x(x, t) dx
)
= 0

(2.8)

Due to the slenderness of high-rise buildings, dynamic wind loads cause the buildings to sway.
The building can be treated as a cantilever structure subjected bending deformations. Therefore,
during the analysis the fundamental mode is assumed in the form of a polynomial shape function,
defined as Ψ(η(x)) = 3η2(x)−2η3(x) (Thompson, 1993). If z(x) = Z0−x denotes the coordinate
measured from the ground level and Z0 is the total height of the entire system, the variable η(x)
is adopted in the form η(x) = z(x)/Z0. In nonlinear deterministic solution, the vibrations that
are induced at the top end of the cable are assumed in form of harmonic motion v0(t) with the
amplitude and frequency denoted as A0 and Ω0, respectively. The dynamic lateral displacements
at the lower end of the cable can be then given by the following expression

vL(L(t), t) = ΨL(L(t))v0(t) ΨL(L(t)) = Ψ
(Z0 − L(t)
Z0

)
(2.9)

where ΨL(L(t)) represents the polynomial shape function evaluated at x = L(t). Because of the
small change of the cable length L(t) during the period T0 corresponding to the fundamental
frequency of the system f0 (Evan-Iwanowski, 1976; Mitropolskii, 1965), a slow time scale can be
introduced as τ = ǫt. If t0 is a given time instant corresponding to the fundamental frequency
and L0 = L(t0), a small parameter ǫ ≪ 1 can be defined by the equation ǫ = L̇(t0)/f0L0
(Kaczmarczyk and Iwankiewicz, 2017b). This slow time scale allows one to differentiate the slow
varying functions from fast varying ones. Using L = L(τ) and a single-mode approximation,
the overall lateral displacements of the cable can be assumed in the form of the finite series as
(Kaczmarczyk, 1997)

v(x, t; τ) = v(x, t; τ) +
(
1 +
ΨL(L(τ))− 1

L(τ)
x
)
v0(t) (2.10)
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with

v(x, t; τ) =
N∑

n=1

Φn(x;L(τ))qn(t)

where v(x, t; τ) are relative lateral displacements that satisfy the homogenous boundary con-
ditions. When N and qn(t) denote the number of modes taken into consideration and the fast
varying coefficients of expansion (generalized coordinates), respectively, the slow varying ortho-
gonal trial functions are given by the expression Φn(x,L(τ)) = sin(nπ/L(τ))x, n = 1, 2, . . . , N ,
and satisfy the homogenous boundary conditions. Using Eq. (2.10) and partial derivatives of
lateral displacements with respect to time and x defined by

vtt(x, t; τ) = vtt(x, t; τ) +
(
1 +
ΨL(L(τ)) − 1

L(τ)
x
)
v̈0(t)

vx(x, t; τ) = vx(x, t; τ) +
ΨL(L(τ)) − 1

L(τ)
v0(t)

vxt(x, t; τ) = vxt(x, t; τ) +
ΨL(L(τ)) − 1

L(τ)
v̇0(t)

(2.11)

Eqs.(2.8) are rewritten in the following form

mvtt(x, t; τ) + EIvxxxx(x, t; τ) +mgvx(x, t; τ) + 2mV (τ)vxt(x, t; τ)

+m
(
1 +
ΨL(L(τ))− 1

L(τ)
x
)
v̈0(t) + 2mV (τ)

ΨL(L(τ)) − 1

L(τ)
v̇0(t) +mg

ΨL(L(τ))− 1

L(τ)
v0(t)

+
{
−T (τ) +m[V 2(τ) + (g − a(τ))x] −

EA

L(τ)

[
uM (t) +

1

2

N∑

n=1

n2π2

2L(τ)
q2n(t)

+
1

2

(ΨL(L(τ))− 1)
2

L(τ)
v20(t)

]}
vxx(x, t; τ) = 0

MüM (t) +
EA

L(τ)

(
uM (t) +

1

2

L∫

0

v2x(x, t; τ)dx
)
= 0

(2.12)

The expression for the eigenvalue is given by

ω2r(τ) =
( rπ
L(τ)

)4EI
m

[
1 +
T (τ)

EI

(L(τ)
rπ

)2]
= λ2r(τ)[ĉ

2
r(τ) + c

2(τ)] (2.13)

where

λr(τ) =
rπ

L(τ)
c2(τ) =

T (τ)

m
ĉ2r(τ) = λ

2
r(τ)
EI

m

Using Eq. (2.13) and the orthogonality conditions defined as

L∫

0

ΦnΦr dx =






L

2
n = r

0 n 6= r

L∫

0

Φ′′nΦr dx =





−
r2π2

2L
n = r

0 n 6= r
(2.14)

where the prime denotes differentiation with respect to x, the set of differential equations of
motion given by Eq. (2.12) is then transformed to the form (r, n = 1, 2, . . . , N)
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mr(τ)q̈r(t) +mr(τ)ω
2
r(τ)qr(t) +mV

2(τ)
(
−
r2π2

2L(τ)

)
qr(t) +m(g − a(τ))

∑

n

Θrnqn(t)

+mg
∑

n

Ψrnqn(t) + 2mV (τ)
∑

n

Ψrnq̇n(t) +mv̈0(t)
(
χr(τ) +

ΨL(L(τ)) − 1

L(τ)
Πr(τ)

)

+ 2mV (τ)
ΨL(L(τ)) − 1

L(τ)
v̇0(t)χr(τ) +mg

ΨL(L(τ))− 1

L(τ)
v0(t)χr(τ)

−
EA

L(τ)

(
uM (t) +

1

2

∑

n

n2π2

2L(τ)
q2n(t) +

1

2

[ΨL(L(τ)) − 1]
2

L(τ)
v20(t)

)(
−
r2π2

2L(τ)

)
qr(t) = 0

üM (t) + ω
2
M (τ)uM (t) +

EA

M

N∑

n=1

β2n(τ)q
2
n(t) = −

EA

2M

(ΨL(L(τ))− 1
L(τ)

)2
v20(t)

(2.15)

where the following expressions are used

Ψrn =

L∫

0

Φ′nΦr dx =






0 n = r
nr

n2 − r2
[(−1)r+n − 1] n 6= r

Θrn =

L∫

0

xΦ′′nΦr dx =






−
r2π2

4
n = r

−
2rn3

(n2 − r2)2
[(−1)r+n − 1] n 6= r

χr(τ) =

L∫

0

Φr dx = −
[(−1)r − 1]L(τ)

rπ
Πr(τ) =

L∫

0

xΦr dx = −
(−1)rL2(τ)

rπ

mr(τ) =
mL(τ)

2
β2n(τ) =

r2π2

4L2(τ)
ωM(τ) =

√
EA

ML(τ)

(2.16)

The undamped natural frequency of the main mass is denoted as ωM (τ) (in the vertical di-
rection). After taking into account the modal damping ratios ζM , ζr and noting that c

2(τ) =
EA/mr(τ), the set of Eqs. (2.15) is simplified as

q̈r(t) + 2ζrωr(τ)q̇r(t) + λ
2
r(τ)[ĉ

2
r(τ) + c

2(τ)− V 2(τ)]qr(t) +
∑

n

Krn(τ)qn(t)

+
∑

n

Crn(τ)q̇n(t) + λ
2
r(τ)c

2(τ)
[uM (t)
L(τ)

+
∑

n

β2n(τ)q
2
r (t)

+
1

2

(ΨL(L(τ))− 1
L(τ)

)2
v20(t)

]
qr(t) = Qr(t; τ) r, n = 1, 2, . . . , N

üM (t) + 2ζMωM (τ)u̇M (t) + ω
2
M (τ)uM (t) +

EA

M

N∑

n=1

β2n(τ)q
2
n(t)

= −
EA

2M

(ΨL(L(τ))− 1
L(τ)

)2
v20(t)

(2.17)

where ωr(τ) is the undamped natural lateral frequency of the whole system while the coefficients
of stiffness and damping denoted as Krn(τ) and Crn(τ) together with the modal excitation
functions Qr(xt; τ) are assumed by the following equations (Kaczmarczyk and Iwankiewicz,
2017b)
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Krn(τ) =






L(τ)

2
(a(τ) − g)λ2r(τ) n = r

2

L(τ)

(
g
nr

n2 − r2
+ (a(τ)− g)

2rn3

(n2 − r2)2

)
[(−1)r+n − 1] n 6= r

Crn(τ) =
4V (τ)

L(τ)






0 n = r
nr

n2 − r2
[(−1)r+n − 1] n 6= r

Qr(t; τ) = −
2

L(τ)

[
v̈0(t)
(
χr(τ) +

ΨL(t(τ))− 1

L(τ)
Πr(τ)

)

+ 2V (τ)
ΨL(L(τ)) − 1

L(τ)
v̇0(t)χr(τ) + g

ΨL(L(τ)) − 1

L(τ)
v0(t)χr(τ)

]

(2.18)

The whole vector q(t) = [q1(t), q2(t), . . . , qN (t)] consists of the fast varying (and observed on the
t time scale) generalized coordinates corresponding to the lateral modes.

The behaviour of the system in the resonance region, when the fundamental frequency of
the system reaches the value that is near the excitation frequency, is now described by an
approximated single-mode model given by the expression (r = 1, 2, . . . , N)

q̈r(t) + Cr(τ)q̇r(t) +
λ4r(τ)

4
c2(τ)q3r (t) +

2

L(τ)
γ(2)(τ)v̈0(t)

+
4V (τ)

L(τ)
γ(1)(τ)χr(τ)v̇0(t) +

2g

L(τ)
γ(1)(τ)χr(τ)v0(t) + λ

2
r(τ)
[
ĉ2r(τ) + c

2(τ)− V 2(τ)

+
L(τ)

2
(a(τ)− g) + c2(τ)

(uM (t)
L(τ)

+
1

2
(γ(1)(τ))2v20(t)

)]
qr(t) = 0

üM (t) + 2ζMωM (τ)u̇M (t) + ω
2
M (τ)uM (t) +

EA

M

λ2r(τ)

4
q2r(t) +

EA

2M
(γ(1)(τ))2v20(t) = 0

(2.19)

where

γ(1)(τ) =
ΨL(L(τ)) − 1

L(τ)
γ(2)(τ) = χr(τ) + γ

(1)(τ)Πr(τ) Cr(τ) = 2ζrωr(τ)

3. Stochastic model

In the deterministic system, the external excitation is assumed in the form of harmonic motion.
However, the real nature of the wind load is nondeterministic and, therefore, it should be ide-
alized as a random process. To compare results obtained from both approaches, the excitation
in the second one is assumed as a narrow-band mean-square process equivalent to the harmonic
process. To satisfy the condition about the continuity and double differentiability, the motion v0
is assumed to be the response to the second-order auxiliary filter of the process (t) which, in
turn, is the response to the first-order filter of the Gaussian white noise excitation ξ (Larsen et
al., 2007). Therefore, the governing equations are adopted in the following form

v̈0(t) + 2ζfΩ0v̇0(t) +Ω
2
0v0(t) = X(t)

Ẋ(t) + αX(t) = α
√
2πS0ξ(t)

(3.1)

with the auxiliary filter damping ratio, the white noise power spectrum level and the filter
variable denoted as ζf , S0 and α, respectively. For the stochastic process v0(t) to be mean-square
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equivalent to the deterministic harmonic one with the amplitude A0, the following condition
(Larsen et al., 2007) needs to be satisfied

Var (v0(t)) = σ
2
v0(t)
=
A20
2

(3.2)

which can be satisfied by defining the filter variable as

α = Ω0
(
−ζf +

√

ζ2f +
ζfΩ

3
0A
2
0

πS0 − ζfΩ
3
0A
2
0

)
(3.3)

If the standard Wiener process and the vectors of drift and diffusion are denoted by W (t),
c(Y(t), t) and d, the second-order differential equations of motions can be replaced by the first-
-order stochastic differential equations in accordance with the formula

dY(t) = c(Y(t), t)dt + ddW (t) (3.4)

where the augmented state vector is given by the following form

Y(t) = [qr(t), q̇r(t), uM (t), u̇M (t), v0(t), v̇0(t),X(t)]
T (3.5)

and the diffusion vector is adopted as

d = [0, 0, 0, 0, 0, 0, α
√
2πS0] (3.6)

Using Eqs.(2.19) and (3.1), the components of the drift vector are obtained in the form as

c1(Y(t)) = q̇r(t)

c2(Y(t)) = −Cr(τ)q̇r(t)− λ
2
r(τ)
[
ĉ2r(τ) + c

2(τ)− V 2(τ) +
L(τ)

2
(a(τ)− g)

+ c2(τ)
(uM (t)
L(τ)

+
1

2
(γ(1)(τ))2v20(t)

)]
qr(t)−

λ4r(τ)

4
c2(τ)q3r (t)

−
2

L(τ)

[
gγ(1)(τ)χr(τ)− γ

(2)(τ)Ω20

]
v0(t)

−
4

L(τ)

[
V (τ)γ(1)(τ)χr(τ)− γ

(2)(τ)ζfΩ0
]
v̇0(t)−

2

L(τ)
γ(2)(τ)X(t)

c3(Y(t)) = u̇M (t)

c4(Y(t)) = −2ζMωM (τ)u̇M (t)− ω
2
M (τ)uM (t)−

EA

M

λ2r(τ)

4
q2r(t)−

EA

2M
(γ(1)(τ))2v20(t)

c5(Y(t)) = v̇0(t)

c6(Y(t)) = X(t) − 2ζfΩ0v̇0(t)−Ω
2
0v0(t)

c7(Y(t)) = −αX(t)

(3.7)

where the significant change in comparison to the string model presented by Weber et al. (2019)
can be seen in the element c2(Y(t)), where the bending stiffness is included.

4. Solution via equivalent linearization technique

The application of the equivalent linearization technique into the analysis requires application
of the centralized state vector assumed as

Y0(t) = [Y 01 (t), Y
0
2 (t), Y

0
3 (t), Y

0
4 (t), Y

0
5 (t), Y

0
6 (t), Y

0
7 (t)] (4.1)
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whose particular components are obtained in accordance to the following equations

Y 01 (t) = qr(t)− µqr(t) Y 02 (t) = q̇r(t)− µq̇r(t) Y 03 (t) = uM (t)− µuM (t)

Y 04 (t) = u̇M (t)− µu̇M (t) Y 05 (t) = v0(t)− µv0(t) Y 06 (t) = v̇0(t)− µv̇0(t)

Y 07 (t) = X(t)− µX(t)

Equation (3.4) expressed in terms of the centralized state vector is given by the formula

dY0(t) = c0(Y0(t), t)dt + d(t)dW (t) (4.2)

where the centralized drift vector c0(Y0(t), t) is defined by

c0(Y0(t), t) = c(Y0(t), t)− E[c(Y0(t), t)] (4.3)

and the expressions for the expected values are assumed in the form of differential equations

d

dt
µ(t) = E[c(Y0(t))] with µ(t) = E[Y(t)] (4.4)

The elements of the centralized drift vector are described by the formulae

c01(Y
0(t)) = Y 02 (t)

c02(Y
0(t)) = −Cr(τ)Y

0
2 (t)−

λ4r(τ)

4
c2(τ)

[
(Y 01 (t))

3 + 3(Y 01 (t))
2µqr(t)

− 3Var (Y 01 (t), Y
0
1 (t))µr(t) + 3Y

0
1 (t)µr(t)

2
]
− λ2r(τ)

[
ĉ2r(τ) + c

2(τ)− V 2(τ)

+
L(τ)

2
(a(τ)− g)

]
(Y 01 (t))−

2

L(τ)

[
gγ(1)(τ)χr(τ)− γ

(2)(τ)Ω20

]
Y 05 (t)

−
λ2r(τ)c

2(τ)

L(τ)

[
Y 03 (t)Y

0
1 (t)− Cov (Y

0
1 (t), Y

0
3 (t)) + Y

0
1 (t)µuM (t) + Y

0
3 (t)µqr(t)

]

−
λ2r(τ)c

2(τ)

2
(γ(1)(τ))2

[
(Y 05 (t))

2Y 01 (t) + (Y
0
5 (t))

2µqr(t)

− Var (Y 05 (t), Y
0
5 (t))µqr(t) + 2Y

0
5 (t)Y

0
1 (t)µv0(t)

]
−
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2(τ)

2
(γ(1)(τ))2

·
[
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5 (t))µv0(t) + 2Y

0
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0
1 (t)µ
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(t)
]

−
4

L(τ)

[
V (τ)γ(1)(τ)χr(τ)− γ

(2)(τ)ζfΩ0
]
Y 06 (t)−

2

L(τ)
γ(2)(τ)Y 07 (t)

c03(Y
0(t)) = Y 04 (t)

c04(Y
0(t)) = −

EA

M

λ2r(τ)

4

[
(Y 01 (t))

2 − Var (Y 01 , Y
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0
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− ω2M (τ)Y

0
3 (t)
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0
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[
(Y 05 (t))
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0
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0
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]
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0
5 (t)− 2ζfΩ0Y

0
6 (t) + Y

0
7 (t)

c07(Y
0(t)) = −αY 07 (t)

(4.5)

where, like in Eqs. (3.7), the significant difference in comparison to the string model can be
seen in the second term. The original non-linear system governed by Eq. (4.2) is replaced with
a linear one governed by the equations

dY0(t) = BY0(t)dt + ddW (t) (4.6)
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where the centralized drift terms are assumed as linear functions of the centralized state variables

c0i,eq(Y
0(t)) = BimY

0
m (4.7)

and Bim are the equivalent coefficients determined from the condition that the error (the equ-
ation difference) ε(Y0), i.e. the difference between Eqs. (4.2) and (4.6)

ε(Y0) = c0(Y0)−BY0 (4.8)

be minimized in the mean-square sense. Hence, the necessary conditions are

∂

∂Bim
E
[
ε
T(Y0)ε(Y0)

]
= 0 or

∂

∂B
E
[
ε
T(Y0)ε(Y0)

]
= 0 (4.9)

Thus

BimE[Y
0
mY
0
j ] = E[Y

0
j c
0
i (Y

0)] or BRY0Y0 = E
[
c0(Y0)Y0

T
]

(4.10)

where RY0Y0 is the covariance matrix of the state variables. As the state vector Y
0 of the

equivalent linear system is a zero-mean, the jointly distributed Gaussian random vector process,
the following identity is used (Atalik and Utku, 1976)

E
[
Y0c0

T
(Y0)

]
= RY0Y0E

[
∇c0

T
(Y0)

]
(4.11)

where

∇ =
[ ∂
∂Y 01
,
∂

∂Y 02
, . . . ,

∂

∂Y 0n

]T

which yields

BT = E
[
∇c0

T
(Y0(t))

]
or Bij = E

[∂c0iY
0(t))

∂Y 0j

]
(4.12)

The resulting matrix B = [bij] is

B =





0 1 0 0 0 0 0
b21 −Cr(τ) b23 0 Fr(τ) Gr(τ) b27
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0 0 0 0 −Ω20 −2ζfΩ0 1
0 0 0 0 0 0 −α





(4.13)

where

b21 = −Kr(τ) +Dr(τ) b23 = −
c2λ2r(τ)

L(τ)
µqr(t) b27 = −

2

L(τ)
γ(2)(τ)

b41 = −
EAλ2r(τ)

2M
µqr(t) b45 = −
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M
(γ(1)(τ))2µv0(t)
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and the following notations are used

Kr(τ) = −λ
2
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(4.14)

Solving the differential set of equations for the covariance matrix RY0Y0 = E[Y
0Y0

T
] defined

by

d

dt
RY0Y0 = BRY0Y0 +RY0Y0B

T + ddT (4.15)

together with the differential equations for the mean values given by Eq. (4.4) leads to variances
and covariances of particular random state variables.

5. Numerical examples – results and discussion

To examine the influence of cable bending stiffness on the final results of a particular random
state variable in comparison to the string model, the numerical analysis was carried out for the
same data as used by Weber et al. (2019): the total height of the system Z0 = 243m, the travel
height H = 200m and the initial length of the cable L(0) = 7.5m. The main mass M = 500 kg
is moving downwards with the transport speed V = 3.5m/s. The external excitation of the host
structure is assumed to have frequency Ω0 = 0.25Hz and amplitude at the top level A0 = 0.3m.
The damping ratios used in the analysis are ζM = 0.03 and ζr = 0.03. The cable mass per unit
length is m = 1.8 kg/m, and the longitudinal stiffness is EA = 15.1MN.

The value of the bending stiffness of the cable to be taken into account during the numerical
computation needs careful consideration. The bending stiffness depends on the modulus of ela-
sticity of SWRs and tension of the cable. Therefore, it can not be directly calculated by using the
cross-section moment of inertia. In most cases, the value of bending stiffness EI is determined
experimentally. The numerical analysis carried out here is for two assumed values, namely for
15Nm2 and 80Nm2, respectively (Kaczmarczyk and Mirhadizadeh, 2016). The simulations car-
ried out yield similar results for these values of bending stiffness. The results for EI = 80Nm2

are compared with the string model (Weber et al., 2019), and the corresponding results obta-
ined from the MC simulation are presented. Figure 2a shows that differences between the mean
(expected) values of the generalized coordinates qr obtained from the two models are insignifi-
cant. On the other hand, some differences in the expectations of vertical displacements uM of
the main mass (Fig. 2b) as well as in the variances of qr and uM (Figs. 2c and 2d) obtained
from the two models can be observed.

The results for the model with bending stiffness obtained by the application of the equivalent
linearization technique depend on the damping ratio of the auxiliary damping filter ζf applied
in the analysis. The plots shown in Fig. 3 demonstrate that the lower the value of ζf , the smaller
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Fig. 2. Expected values and variances of a particular random state variable

Fig. 3. Comparison of nonlinear deterministic results and expected values

the differences between the deterministic and stochastic solution. The same regularity was also
observed for the string model (see Weber et al., 2019).

To verify the results obtained by the equivalent linearization technique, Monte Carlo simu-
lation was used and conducted by using 2000 simulations for the time step ∆t = 0.025 s. The
calculation was made only for one value of the coefficient ζf = 0.01, for which the condition given
by Eq. (3.2) was satisfied. The same as in the string model, the expected values of generalized
coordinates and variances of v0 and X(t) showed good matches between the curves (see Weber et
al., 2019). The expected values of vertical displacements of the main mass and variances of uM
and qr showed greater differences between both methods but the order of magnitudes presented
on the diagrams were comparable. It brings a conclusion that to obtain satisfactory convergence
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of the results from both methods, the number of simulations in MC computations should be
near 10000, but then the cost of the calculation is very high.

Fig. 4. Results of the equivalent linearization technique and Monte Carlo simulation

The comparison of the system fundamental frequency shows that for the string model, the
ωr reaches the value 0.25Hz for length L = 132.9, whereas for the model including cable bending
stiffness, the resonance effect can be observed for the length equal to 144m. Precise determination
of the resonance point is very important in the analysis of dynamic behaviour of the system and
when suitable resonance mitigating measures, such as application of tuned mass damper systems,
need to be considered.

6. Concluding remarks

The results presented in this paper demonstrate that the behaviour of the system represented by
the taut string model of the cable and by the model with cable bending stiffness is similar. This
is due to a relatively small bending stiffness and high axial tensions of SWRs that are applied
in the calculations. However, some differences are noticeable in the expected values of vertical
displacements of the main mass and its variances.
Additionally, it should be noted that a significant shift of the resonance point can be observed

after considering the bending stiffness during the analysis, which is very important for safe design
and evaluation of structural integrity of traction driven transportation systems deployed in high-
-rise buildings.
In conclusion, the taut string model can be used in the analysis of the cable-mass system

moving in a cantilever host structure under the operating conditions considered, when the axial
tension of the cable is large. For lower axial tension values and slack cable conditions, the
tensioned beam model should be considered. In such cases, further analysis would be required
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to accommodate more involved boundary conditions applied at the lower and upper ends of the
cable, respectively.
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